首页 > 币圈新闻 > 文章正文

如何匿名却又保持交易有效 一文带你了解零知识证明

币灵灵财经 2024-11-25 23:54 411

欧易交易所

欧易交易所

软件大小:268.26MB

软件版本:v3.4.2

随后小零打开宝箱取出了小十放进去的纸张,并展示给了小十看,小十核对字符串和签名无误。这证明了小零确实知道宝箱密码,而且这张纸确实是宝箱里拿出来的。

零知识证明

零知识证明最初是于由麻省理工教授Shafi Goldwasser、Silvio Micali以及密码学大师Charles Rockoff三位作者在《The Knowledge Complexity of Interactive Proof Systems》论文中提出的。该一算法概念为现代密码学奠定了一定基础。

零知识证明有两个额外的属性:简明性和零知识。简明性允许验证者接受一个大型计算的正确性,而无需自己计算该语句或陈述。而零知识保证了没有任何关于输入的数据被泄露。

零知识证明对于确保许多加密协议的隐私和安全至关重要。它们是防止潜在信息泄露的保障,是Crypto世界的隐形防弹衣。该知识的应用可延伸至不同领域,包括区块链技术和安全认证系统,其中敏感数据的保护是最重要的。

PLONK是一种零知识证明系统,其全称是:

“Permutations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge”,即“基于拉格朗日基数的全局非交互式知识证明排列”。

PLONK因其高效和简单性而引人注目,也因此成为了对安全、私密交易系统有需求的项目及公司的热门选择。与其他系统相比,它每个gate(计算的基本单位,我们下文统称“门”)使用的约束条件更少,这使得计算速度更快且可扩展性更高。Vitalik Buterin已经发表了关于PLONK的更全面的描述。【复制下链接至浏览器即可查看原文https://vitalik.ca/general/2019/09/22/plonk.html】

1. 操作:比如对输入数据进行的乘法和加法计算2. 操作执行的顺序

采用不同的门和电路架构,有多种方法来表达电路。

通过随机选择一个β,我们可以通过Schwartz-Zippel lemma检查这些多项式是否等价。如果它们作为多项式是等价的,那么集合a''和b''作为多集则是等价的。如果它们不是等价多项式,那么a''和b''就不是等价的多集。